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Generic weakly nonlinear model equations for density waves in two-phase flows

Ooshida T.*

Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan
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Whitham’s linear theory of traffic flows is extended to include dispersion and nonlinearity so as to describe
the density waves in two-phase flows. An improved multiple-scale expansion incorporating the idea of the
Padéapproximation is introduced in order to include systematically the higher order dispersion and nonlinear-
ity into the approximate equations. As a result, generic nonlinear evolution equations with nonconservative
terms of a form such as]T]XC are obtained. It is shown, numerically and analytically, that these terms
effectively incorporate not only linear dispersion relation but also some higher order nonlinearity, which we
call ‘‘baseline effect.’’ This effect is thought to be essential to the density waves in two-phase flows.
@S1063-651X~97!12207-3#
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I. INTRODUCTION

Much attention has been paid to a certain kind of wa
phenomenon that is commonly observed in several n
conservative systems. One such observation is known
density~or voidage! waves in two-phase flows. The densi
waves represent generic dynamical features of two-fluid s
tems such as gas-powder mixture flows, bubbly liquid flow
and gas-droplet flows@1,2#. Since many kinds of flows o
nearly uniform two-phase fluids are modeled by quite sim
sets of equations describing conservations of mass and
mentum for individually incompressible phases, a univer
discussion based on a generic model set of equations~two-
phase continuum modeling! should be justified@3#.

Recently notice has been taken of a phenomenolog
resemblance between granular pipe flows and traffic flo
@4#. In granular pipe flows, the presence of fluid~air, water,
etc.! is believed to be essential, so that this case also belo
to the two-phase system. On the other hand, it was more
a decade ago that the behavior of linearized waves in t
phase flows was explained in terms of Whitham’s ‘‘wa
hierarchies,’’ which were originally proposed in the conte
of traffic flows @5,6#. With these evidences we may identi
the wave evolutions in traffic flows with those in variou
systems of two-phase flows.

The concept of ‘‘wave hierarchy’’ has been introduced
association with the ill-posedness of the Cauchy initial va
problem. The characteristics of the wave equation beco
imaginary and lead to the instability of the wave under co
sideration. Thus it is termed ‘‘the problem of complex cha
acteristics.’’ Corresponding instabilities in two-phase s
tems are discussed in terms of the wave-hierar
interpretation@6–9#. Inclusions of such instability mecha
nisms lead to negative diffusion, so that the wave becom
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unstable ultimately unless some damping mechanisms
considered@10–13#. By means of the multiple scale pertu
bation, it is shown that the density waves may be descri
by the Benney equation@14#, which is the Korteweg–de
Vries ~KdV! type equation including the negative diffusio
term and the higher order dissipation term@3,15–17#.

Although the Benney equation describes some asympt
stage of the unstable density waves, it is derived from
outset by means of the perturbation under the long w
approximation and it cannot express well the dispersion
the higher wave number range. In addition, endowed wit
finite intrinsic length defined by the coefficients of the se
ond and the fourth derivative terms, the Benney equat
seems to be incapable of describing the unlimited long w
modes that are relevant in real systems.

In this paper, an improved multiple-scale expansion inc
porating the idea of the Pade´ approximation is introduced to
establish a procedure to deal with nonlinear, nonconserva
waves subject to two-phase continuum modeling. As a res
we derive nonlinear evolution equations that are though
incorporate both linear dispersion relation and higher or
nonlinearity effectively by simple terms.

In Sec. II, we relate our problem to Whitham’s idea
wave hierarchies. Then we introduce nonlinearity to obtain
KdV-like equation

@]T1]X2]T]X
2 #C1C]XC2mC2]XC2g]X@]T1]X#C

50, ~1.1!

with terms of nonconservative nature~the terms withg).
This equation is rigorously derived in Sec. III by means of
improved multiple-scale expansion method. Results of
merical simulations are shown in Sec. IV, both for the Kd
like evolution equation and for an original set of two-pha
model equations. The properties of Eq.~1.1! are discussed in
Sec. V.

The authors believe that Eq.~1.1! is ubiquitous, in the
sense that it is applicable commonly to density waves
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512 56OOSHIDA T. AND TAKUJI KAWAHARA
two-phase systems, congestion waves in traffic systems,
generally to waves in systems subject to the two-phase
tinuum modeling. Because the zero wave number m
plays an important role in these waves, the Ginzburg-Lan
equation is not relevant. Our equation is rather related to
Benney equation@14#. The main difference is that the Ben
ney equation explicitly adopts the fourth derivative, wh
Eq. ~1.1! avoids it and therefore is free from the artifac
caused by it.

II. NONLINEAR MODEL EQUATIONS

A. Wave hierarchies

To begin with, we review the idea of ‘‘wave hierarchies
of Whitham @5#. To do so, we take notice of the fact th
Whitham’s equations of traffic flow are quite similar to th
governing equations for nearly uniform two-phase flows.
description of such two-phase flows should postulate f
equations, namely, the continuity equation and the mom
tum balance equation for the heavier phase, and those fo
lighter phase. The inertia of the lighter phase, however
often negligible, so that the lighter phase momentum eq
tion is decoupled, and since the sum of the volume fracti
is unity, one of the continuity equations is also eliminated
one-dimensional case@3#. Thus we are left with two equa
tions that generally govern~nearly uniform! two-phase
flows. They consist of the continuity equation

] tf1]x~fv !50 ~2.1!

and the momentum balance equation

] t~fv !1]x( @momentum flux terms#

5( @body force terms#, ~2.2!

in which ~nonconservative! body force terms are dominan
and nearly balanced among themselves. (12f stands for the
so-called voidage, or void volume fraction.! The momentum
balance equation, together with some constitutive equati
is rewritten in the form

F~f,v !1eF1~]xf,] tv,••• !1•••50, ~2.3!

which is reduced to a velocity-density relation

F~f,v !50 ~2.4!

at the lowest order of approximation. For this reason
~2.3! may be called avelocity-density conjuncting equation.
This type of equation is found also in the context of traf
flows @4,5#.

Let us consider a one-dimensional system governed
the continuity equation~2.1! and the velocity-density con
juncting equation~2.3!. At the lowest order of approximation
in regard to a smallness parametere, Eq. ~2.3! is reduced to
the relation~2.4!. ProvidedF(f̄, v̄ )50 with constantf̄ and

v̄ , these equations are linearized as

@] t1 v̄ ]x#c1f̄]xw50, Ac2w50, ~2.5!
nd
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wheref5f̄1c,v5 v̄1w, andA is a constant. Elimination
of w yields a first-order linear hyperbolic equation

@] t1a]x#c50, a5 v̄1Af̄. ~2.6!

Proceeding to the higher order of approximation in regard
e, we obtain by a similar procedure

@] t1a]x#c1t@] t1b1]x#@] t1b2]x#c50, ~2.7!

with t;e andt.0. This postulation comes from the linea
ized form of Eq.~2.3!,

t] tw52w1Ac2B]xc1•••, ~2.8!

wheret must be positive so thatw will be ‘‘slaved’’ to c.
The first-order equation~2.6! should be a good approxi

mation to the second-order equation~2.7! for time scales
much longer thant. Meanwhile under the second-order h
perbolic equation~2.7! signals propagate at finite speed
namely, atb1 andb2. Therefore, in order that the two leve
of descriptions~2.6! and ~2.7! shall be consistent, thewave
hierarchy condition

b1<a<b2 ~2.9!

must be satisfied; otherwise the initial value problem is
posed. The termwave hierarchyimplies that the characteris
tics of the lower-order waves should be between the cha
teristics of the higher-order waves.

The criterion of well posedness~2.9! is verified by substi-
tuting the elementary solution

c5c0exp~st1 ikx! ~2.10!

into Eq. ~2.7! and seeking the condition for the real part
s to be nonpositive for any real value ofk. A straightforward
calculation is possible, but it would be wiser to begin wi
the neutrally stable case wheres52 iv is purely imaginary.
The quadratic equation fors is then decoupled into two
simple equations of real variables

~v2b1k!~v2b2k!5v2ak50, ~2.11!

which has a solution only whena5b1 or a5b2. Obviously
this leads to the stability criterion of the form~2.9!.

Without loss of generality we can setb152b25b and
rewrite Eq.~2.7! as

@] t1a]x#c1t@] t
22b2]x

2#c50, ~2.12!

wherea andb are positive constants with the dimension
velocity.

B. Extended idea of wave hierarchies

If a.b in Eq. ~2.12!, the initial value problem is ill
posed, and leads to instability in such a way that the gro
is faster for shorter wavelength. This behavior does not
flect the real behavior of the physical system described
the original set of Eqs.~2.1! and ~2.3!. Evidently higher de-
rivative terms in Eq.~2.3! prevent the short wave modes
grow.
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56 513GENERIC WEAKLY NONLINEAR MODEL EQUATIONS . . .
Typically we think of the ‘‘momentum diffusion term’’
~usually calledviscosity term!, which takes the form]x

2w
appearing in the right-hand side of Eq.~2.8!. Inclusion of this
term modifies Eq.~2.12! so that we may have

@] t1a]x#c1t@] t
22b2]x

2#c2l2] t]x
2c50. ~2.13!

Equation ~2.13! is divided into two parts as
L̂1c1L̂2c50, so that both of the equations

L̂1c5@] t1a]x2l2] t]x
2#c50, ~2.14a!

L̂2c5@] t
22b2]x

2#c50 ~2.14b!

admit only neutrally stable waves, i.e., only purely imagina
s52 iv. Their velocities area/(11l2k2), 6b. The first
order wave is now dispersive. The neutrally stable mode
Eq. ~2.13! are then easily obtained. The criterion for th
modek not to grow is written in the form

2b<
a

11l2k2
<1b, ~2.15!

which is an extension of the condition~2.9! for the dispersive
case.

The left inequality of the condition~2.15! always holds.
The right inequality becomes invalid for small wave numb
modes whena.b. Even in that case the range ofk for
growing modes is finite. The short waves always damp,
that the initial value problem is well posed in the sense t
Res is bounded ask→` @18,19#.

C. Extension to nonlinear cases

Whena.b and therefore the small wave number mod
have positive growth rate, nonlinearity must be included
limit the wave growth. We apply the method of frozen coe
ficients, which readily gives deep results for nonlinear pro
lems @18#.

We recall thata,b,l, andt in Eq. ~2.13! may all depend
on f̄. This is true whenf̄ is constant. We assume that E
~2.13! still holds locally whenf̄ varies slowly in space and
time. Then we have

@] t1a~f̄ !]x#f1t~f̄ !@] t
22b~f̄ !2]x

2#f2l~f̄!2] t]x
2f50,

~2.16!

with f5f̄1c. As c is small, f̄ in Eq. ~2.16! may be re-
placed byf.

Paying attention to the appearance of the growing mod
we define f* by the critical conditiona(f* )5b(f* ),
around which we perform an expansion

a5a~f̄ !5a01a1~f̄2f* !1a2~f̄2f* !21•••,
~2.17!

and similarly forb, l, andt. The dominance of long wave
modes suggests, however, that the coefficients of the hi
derivative terms are less influential to the behavior of E
~2.16!. Therefore it may be allowed, at least in a heuris
discussion, to regardb, l, andt as constants. We adopt on
of
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the expansion~2.17! of a and substitute it into Eq.~2.13!
with b5 const5a0 ~by definition off* ). The unidirection-
ality leads to

t@] t
22b2]x

2#c5t~] t2b]x!~] t1b]x!c

.22ta0]x~] t1a0]x!c, ~2.18!

because for long waves] tc.2a0]xc at the lowest approxi-
mation. By suitable rescaling we obtain a weakly nonline
equation

@]T1]X2]T]X
2 #C1C]XC2g]X@]T1]X#C50,

~2.19!

with C}f2f* , whena is expanded toa1. Later we will
show that inclusion ofa2 is indispensable. This inclusion
yields a modified Korteweg–deVries~MKdV ! term
2mC2]XC so that we arrive at Eq.~1.1!.

In analogy to Eqs.~2.14!, Eq. ~2.19! is divided into two
parts asM̂C1N̂C50 where

M̂C5@]T1]X2]T]X
2 #C1C]XC, ~2.20a!

N̂C52g]X@]T1]X#C. ~2.20b!

Each operator corresponds to a wave equation whose s
tion can travel with a constant shape, not growing or dam
ing. If these two equations have a common solution travel
with a common velocityc, Eq. ~2.19! also admits the stead
traveling solution. A family of cnoidal wave solutions

C5
12

l 2 Fm2 cn2S x2ct

l
,mD1

1

3
~122m2!G , c51

~2.21!

is found to meet this demand. Later we will show that t
condition c51 is not only sufficient but also necessary f
admitting steady traveling solutions to equations such as
~1.1! or Eq. ~2.19!.

III. RIGOROUS DERIVATION OF MODEL EQUATIONS

A. Improved multiple-scale expansion method

Equation~1.1! derived here has terms of peculiar form
such as]T]XC and]T]X

2C. The latter has been known in th
regularized long wave equation@20,21#. The merit of such
terms has been thought to be an improved expression o
linear dispersion relation. In Sec. V, we will show, howeve
that also some part of the higher-order nonlinear effec
described by these terms.

However, it may be questionable whether the nonlinea
to the degree of being both sufficient and necessary has
included or not. The heuristic derivation given in Sec. II
not free from the suspicion that approximations are arbitr
and may be inconsistent with each other. Evidently we m
resort to a systematic and justifiable analysis. We propos
improved method of multiple-scale expansion, which, for
nately, can legitimize Eq.~1.1!.

Before describing our expansion method, we would li
to clarify why the usual reductive perturbation expansion
not good enough. Let us follow the usual method in multip
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514 56OOSHIDA T. AND TAKUJI KAWAHARA
scale notation. The Gardner-Morikawa transfo
] t5e] t11e3] t3, ]x5e]x1, ] t152c]x1 and scaling of the

far-field variablescwave;wwave;e2 yield the KdV equation
at the fifth order ofe. In the next ordere6, the Benney
equation with an additional nonconservative term]x

2(c2) is
obtained@17#. The additional term is necessary in order
describe the influence of the ‘‘baseline’’ mode upon t
emergence of positive growth. This nonlinear destabiliz
term, however, cannot be balanced until we proceed toe8 to
pick up ]x

2(c3) and ]x
4(c2). Such a high-order expansio

would be ridiculous, because there would be too many te
and no guarantee of convergence for finite values ofe.

It is possible, however, to obtain a less intractable eq
tion. In principle we can perform the expansion procedure
to the eighth order ofe, and then put some higher term
together into the form] t]xf, ] t]x

2f, etc., reducing the num
ber of terms. Practically, this tedious expansion proced
can be skipped by the following technique. We define a
ear differential operator

L̂511A~1!]x1A~2!]x
21•••, ~3.1!

with adjustable constantsA( j ). Then a ‘‘distorted’’ time de-
rivative

]s5L̂] t ~3.2!

is introduced and the expansion is performed in regard
(]s ,]x) instead of (] t ,]x). The adjustable parameters a
defined so that higher-order terms may vanish. This pro
dure is an operator analogue of the Pade´ approximation.

B. Calculation procedure of expansion method

Suppose that an explicit form of the velocity-density co
juncting equation~2.3! is given. For concreteness we assum
the following form:

R@] t1v]x#v5~Vex2v !I ~f!212RM22]xP~f!1]x
2v,
~3.3!

which is just a rewriting of the generic model equation p
posed by Kawahara@3#. We expressI (f) andP(f) as ex-
pansions around somef05 const for later convenience:

I ~f!5V0
22@V01a~c/f0!1a~c/f0!

2

1a~3!~c/f0!
31•••#, ~3.4!

M22]xP~f!5@b21b~c/f0!1•••#f0
21]xc, ~3.5!

wherec5f2f0. Note that the expansion coefficients d
pend onf0.

If we linearize the governing set of Eqs.~2.1! and ~3.3!
around the uniform state (f,v)5(f0 ,0) with Vex5V0, we
obtain Eq. ~2.13! together with the coefficientst5RV0,
l25V0, findinga andb to be given by the expansions~3.4!
and ~3.5!. By assuming an elementary solution~2.10!,
s5s6 is given in an explicit form. The real part ofs2 is
always negative, while that ofs1 becomes positive when
a.b. Paying attention to the case of the emergence of p
g
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tive Res1 , we setf05f* so thata5b. At this point~2,2!-
Padéapproximant@22# to s1 is calculated as

s1ua5b.
2 iak22a2RV0k

2

122iaRV0k1V0k
2 . ~3.6!

Let us formulate the long wave expansion by expand
the differential operators and the variables as follows:

]s5e]s11e2]s21e3]s31•••, ~3.7!

]x5e]x11e2]x21e3]x31•••, ~3.8!

f5f01c5f01ef11e2f21e3f31•••, ~3.9!

v5ev11e2v21e3v31•••. ~3.10!

Here f1 and v1 are assumed to be independent
s1 ,s2 ,x1 ,x2. This assumption means thatf01ef1 varies so
slowly that]x(f01ef1);e4]x3f1 is negligible in compari-

son with ]xf;e3]x1f2. Thesee
1-order variables are intro

duced so that higher order nonlinear terms, such
f1]x1

2 f2 and f1
2]x1f2, will appear at the same order a

]x1
3 f2 andf2]x1f2. Due to Eqs.~3.3!, ~3.4!, and~3.10!, the

control parameterVex should be in proximity toV0, so we
write Vex5V01eV1.

The adjustable constants inL̂ should be determined afte
all the calculations, but provisionally we set

L̂5122RVa]x2V]x
2 , ~3.11!

in accordance with the denominator in the Pade´ approximant
~3.6!. The governing equations are now rewritten as

]sf1L̂]x~fv !50, ~3.12!

R]sv5L̂$2R]x~v
2/2!1~Vex2v !I ~f!21

2RM22]xP~f!1]x
2v%, ~3.13!

into which we substitute Eqs.~3.7!–~3.10!.
At the first and the second order ofe we obtain

v15V11af1 /f0 , ~3.14!

v25af2 /f01a~2!~f1 /f0!
2, ~3.15!

wherea(2)5a2a2/V0. The next ordere3 yields

@]s11a]x1#f250, ~3.16!

v35af3 /f012a~2!f1f2 /f0
21a~3!~f1 /f0!

3,
~3.17!

with a(3)5a (3)22aa/V01a3/V0
2. Hereafter]s11a]x1 is al-

ways equated to zero, which is just the Gardner-Morika
transform.

At the fourth order we use a secular condition forf2,
noting thatf1 is independent ofx1 , x2 , s1, ands2. Then we
obtain
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@]s21a]x21V1]x1#f212~a1a~2!!~f1 /f0!]x1f222a2RV0]x1
2 f250, ~3.18!

@]s31a]x3#f150, ~3.19!

v45af4 /f01a~2!~2f1f31f2
2!/f0

213a~3!f1
2f2 /f0

31a~4!~f1 /f0!
41RV0@4aa

~2!1a22b#f0
22f1]x1f2 . ~3.20!

The constanta(4) is composed ofa (4), a (3), a, a, andV0.
We then proceed to the fifth order to collect all that is needed. The result is

@]s21a]x21V1]x1#f31@]s31a]x31V1]x2#f21@]s41a]x41V1]x3#f112~a1a~2!!f0
21f1]x1f312~a1a~2!!f0

21f1]x2f2

12~a1a~2!!f0
21f1]x3f113~a~2!1a~3!!f0

22f1
2]x1f22RV0~3a

21b!f0
21f1]x1

2 f2

22aRV0@a]x1
2 f312a]x1]x2f21V1]x1

2 f2#50. ~3.21!
o-
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Equation~3.21!, combined with Eqs.~3.16! and ~3.18!, can
be rewritten as

@]s1~a1DV!]x#c1~a1a~2!!f0
21]x@c2#

1~a~2!1a~3!!f0
22]x@c3#22aRV0~a1DV!]x

2c

2~3a21b!RV0f0
21]x

2@c2/2#5O~e5!, ~3.22!

where

]s5@122RV0a]x2V0]x
2#] t , ~3.23!

DV5Vex2V05eV1 , ~3.24!

c5f2f05ef11e2f21e3f31e4f41O~e5!.
~3.25!

By adding terms of different order ofe in Eq. ~3.25!, actually
we want toextrapolatethis result to finite values ofe. Since
the Pade´ approximation is known to be effective in extrap
lation, we may expect that also our extrapolation does wo

When the boundary condition allows the Galilei tran
form, DV can be set equal to zero without loss of general
OtherwiseDV can be approximately eliminated by an orig
shift of c. By suitable rescaling of variables, we obtain

@]T1]X2]T]X
2 #C1C]XC2mC2]XC2g8]X@]T1]X#C

2d]X
2@C2/2#50, ~3.26!

whereg8 andm are positive constants.
However, we have not yet reached the goal. Substitu

of

C5Cb1Ĉexp@sT1 ikX# ~3.27!

with Ĉ!1 into Eq.~3.26! yields

s5
2 i ~11Cb2mCb

2!k2~g81dCb!k
2

12 ig8k1k2

→2~g81dCb!~k→1`! ~3.28!
k.
-
.

n

and unfortunately leads to a true ill posedness for some
ues ofCb . This difficulty is due to the term]X

2@C2/2#, but
it can be ‘‘regularized’’ by noting that

2]X
2@C2/2#52]X@C]XC#

5]X@~]T1]X2]X
2]T!C1O~e5!#

5]X@]T1]X#C1O~e6!. ~3.29!

Settingg5g82d, finally we obtain Eq.~1.1!. This ‘‘regu-
larization’’ is equivalent to setting the linear differential op
erator as

L̂512S 2a2
3a21b

a1a~2! DRV]x2V]x
2 . ~3.30!

IV. NUMERICAL SIMULATIONS

A. Description of numerical simulations

Initial value problems are numerically solved under t
periodic boundary condition, both for the reduced equat
~1.1! and for the original set of model equations~2.1! and
~3.3!. For both cases, the pseudospectral method by Fou
expansion is adopted. Time integration is performed by
fourth order Runge-Kutta method. The adequacy of the
merical scheme, time step, and mode number was che
by running solutions expected to travel in constant shap
Such solutions~steady traveling solutions! can be obtained
as eigensolutions, numerically or maybe analytically.

B. Dynamics of reduced equation

Equation~1.1! involves Eq.~2.19! as a special case wher
m50. Let us begin with this case.

In Fig. 1, three runs~a!, ~b!, and~c! are compared to show
the effect of ‘‘base line.’’ The parameters are commo
g50.1,m50. Also the initial data~of white-noise spectrum!
are the same except for the zeroth Fourier mode~‘‘base-
line’’ !. The baseline levels for~a!, ~b!, and~c! are set at 0.3,
0.1, and20.2, respectively.

In every case the highest modes rapidly damp away.
lower modes survive to form a rather irregular wave train.
the case~a! each peak in this irregular wave train tends
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grow higher under the constraint of mass conservation.
nally the highest peaks are found to ‘‘blow up’’ due to se
focusing. This divergence seems to occur at some finite ti
On the contrary, the peaks in the case~c! are subject to
diminution; all the structures seem to fade away until rea
ing a uniform state. Something like a dispersive shock w
small amplitude is observed at the final stage. The case~b! is
intermediate. As far ast,3000, several peaks endure to t
end, not blowing up or damping away. We conclude that
zero wave number mode is influential to the overall wa
evolution. In this paper we call it ‘‘baseline effect.’’

The presence of positivem suppresses the explosion
peaks, as is seen in Fig. 2. The long time limiting state
considered to be a separation into two levels.

C. Comparison with original dynamics

Some initial value problems for the set of Eqs.~2.1! and
~3.3! are solved numerically. Explicit forms ofI andP are
assumed asI (f)5(12f)212m, P(f)5(12f)2n, with
m54, n51. Thena andb are calculated explicitly, yielding
f*50.428.

Figure 3 shows typical results of two runs for the sa
parameter valuesR51.0,M55.0. For both runs the initia
condition forf is given by a sinusoidal wave that is of th
lowest mode and of the same amplitude 0.1. Only the ba
line mode is different: 0.5 (.f* ) in ~a! and 0.4 (,f* ) in
~b!. The initial condition forv ~here given by a sinusoida
wave! is not important, becausev soon becomes almos

FIG. 1. Time evolutions under Eq.~2.19! for white noise initial
data with different baseline levels:~a! 0.3, ~b! 0.1, and~c! 20.2
(g50.1). In the case~a! the solution diverges at some finite tim
after which no finite solution can exist.
i-

e.

-
h

e
e

s

e

e-

‘‘slaved’’ to f. For this reason we do not depictv in Fig. 3.
At the first stage of time evolution, both runs~a! and ~b!

show formation of pulses, seemingly due to the dispers
In the case~a! the pulses damp out, while in the case~b! they
grow as long as the numerical scheme endures the ampli
of f. The result of~b! is regarded as a separation into tw
phases of different density~i.e., of different void fraction!.

Following the expansion recipe given in Sec. III, we ca
culate the numerical setting for the reduced equation~1.1!.
WhenR51.0,M55.0, the following values are obtained

C522.3253~f2f* !, f*50.428,

dX/dx54.05, dT/dt50.93,

g5g82d50.1132~20.511!50.624,

m51.14.

We then perform numerical simulations of Eq.~1.1! under
this setting, with initial conditions corresponding to those
Fig. 3. As is seen in Fig. 4, behavior of the solutions to t
original equations is qualitatively reproduced, at least in
gard to the pulse amplitude.

V. DISCUSSION

A. The significance of terms

The outstanding feature of Eq.~1.1!, or ~2.19! in a special
case, is that it includes the term]T]XC. This term seems to

FIG. 3. Fully nonlinear dynamics under Eqs.~2.1! and ~3.3!
with baseline levels~a! 0.5 (.f* ) and ~b! 0.4 (,f* )(R
51.0,M50).
FIG. 2. Peak growth saturation due tom.0 in Eq. ~1.1! (g52.0,m50.3).
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have been never considered before, at least in the conte
long wave model equations. As well as the term]T]X

2C, this
term has two merits. On one hand it reproduces the lin
s-k relation for shorter waves more precisely. On the ot
hand it introduces a kind of higher order nonlinear effe
which we call ‘‘baseline effect’’ in this paper.

Let us consider the linear relation first, by settingm50
for simplicity. WhenC5Ĉexp@st1ikx# is small, lineariza-
tion of Eq. ~2.19! yields a~complex! dispersion relation

s5
2 ik2gk2

12 igk1k2
. ~5.1!

This is nothing other than a Pade´ approximant@22# to the
original dispersion relation under Eq.~3.3!. It reproduces the
behavior ofs not only for small values but also for larg
values ofk. This is meaningful in the present case for tw
reasons. First, growth and damping lead to interaction
tween different scales, so we cannot limit ourselves to
long wave modes. Second, if a description by pulse dyn
ics is possible, the tail structure of the pulse is import
@23#; therefore the linear evanescent modes should be
rectly expressed.

What seems more important is that the terms]T]XC and
]T]X

2C can incorporate nonlinearity. Suppose that

C5Cb1Ĉexp@sT1 ikX# ~5.2!

with constantCb . As Ĉ!1 we obtain

s5
2 i ~11Cb!k2gk2

12 igk1k2

5H 2 i ~11Cb!k1gCbk
21••• ~for long waves!

2g1O~k21! ~for short waves!

~5.3!

to find that the sign ofCb defines the sign of Res for long
waves. The zero wave number mode or ‘‘baseline mod
Cb is influential through the implicit nonlinearity introduce
by these terms. This is explained intuitively by recognizi
that ]T.2(11Cb)]X in Eq. ~2.19! for long waves.

FIG. 4. Time evolutions under Eq.~1.1!. The graphs are de
picted upside-down for comparison with Fig. 3 (g50.62,
m51.1).
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Certainly the effect of the baseline mode is present als
the original, fully nonlinear system, as is clear from the n
merical simulations~see Fig. 3!. By linearizing Eqs.~2.1!
and ~3.3! around the uniform state (f,v)5(f0 ,0), we ob-
tain Eq. ~2.13!, wherea and b depend onf0. Instability
depends on whethera.b and therefore onc0, i.e., the
‘‘baseline mode.’’ This mechanism is passed on to E
~2.19!. To see this, we split the equation into two parts as
Eq. ~2.20! and substitute the trial solution~5.2! into each of
them. For both casess is found to be purely imaginary, an
the phase velocities forM̂ and N̂ are calculated as
cM511Cb andcN51, respectively. The sign and the ma
nitude ofcM2cN , timesg, defines the growth rate of long
waves in Eq.~2.19!, which is just the wave hierarchy cond
tion. The physical meaning ofg is the inertia. The existence
of the inertia~of the heavier phase! limits the signal propa-
gation speed, and the velocity of the kinetic waves,a, cannot
exceed it without causing instability. Endowed with th
physical interpretation, the term]T]XC is quite meaningful.

A similar discussion is possible for the case with t
MKdV term (m.0). It is found that positive growth is con
fined within a finite range of baseline level, defined by t
condition Cb2mCb

2.0, which lies between two distinc
stable ranges. Some numerical solutions of Eq.~1.1! show
‘‘separation’’ into these two stable states, while the soluti
of Eq. ~2.19! for the same initial condition explodes withi
finite time due to self-focusing. This is the reason why t
MKdV term should be included. We should note that K
matsu and Sasa have obtained the MKdV equation as
lowest order model for traffic flows@4#.

B. Steady traveling solutions

In many nonlinear systems steady traveling solutions p
an important role. The triumph of the soliton is too famous
mention here. Pulse dynamics achieved remarkable suc
in several nonconservative, nonintegrable systems, descr
by the Kuramoto-Sivashinsky equation, the Benney eq
tion, etc.@23,24#.

We can obtain steady traveling pulse solutions to E
~1.1!. By assuming thatC5C(Z) with Z5X2cT, we ob-
tain an ordinary differential equation

~12c!]ZC1c]Z
3C1C]ZC2mC2]ZC2~12c!g]Z

2C50,
~5.4!

which poses a nonlinear eigenvalue problem under
boundary conditionC(zmin)5C(zmax)5Cb . The ‘‘eigen-
value’’ c is easily determined as follows. Let us multiply E
~5.4! by C and integrate with respect toZ. This leads to

~12c!gE dZ~]ZC!250 ~5.5!

by partial integration. Obviouslyc51 if C is not trivial.
Then the terms withg completely cancel out each other, s
that we obtain a family of exact solutions that travel in co
stant shape withc51. Especially, whenm50, a family of
cnoidal wave solutions~2.21! is obtained. Note thatl can
take any positive value ifCb is given in accord.
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C. Comparison with other models of nonconservative waves

According to the linearized expression~5.3!, the sign of
Cb determines the sign of Res for long waves. This is the
‘‘baseline effect.’’ WhenCb,0, the dynamics is similar to
that of the KdV-Burgers equation. On the other hand,
dynamics forCb.0 resembles that of the Benney equati
in the existence of positive growth in long wave regio
Weakly nonlinear analysis of waves in two-phase flows
yielded either the KdV-Burgers equation or the Benn
equation, depending on the setting. We may say that
equation unifies these two cases.

The Benney equation and the Kuramoto-Sivashin
equation involve an intrinsic length, determined by the co
ficients of]X

2C and]X
4C. This length, defining the width o

the steady pulse solution, seems to be influential to the t
evolution, though it is a little modified due to nonlinearit
On the contrary Eq.~1.1! does not involve such a finite in
trinsic length, as is clear from Eq.~2.21! or Eq. ~5.3!. The
presence of intrinsic length, independent ofC, is thought to
be an artifact as far as waves in two-phase flows or tra
flows are concerned, because under the set of Eqs.~2.1! and
~3.3! wavelength appears to have no such limit.

Due to the lack of intrinsic wavelength at criticality, w
cannot apply the~time-dependent! Ginzburg-Landau equa
tion, except when a finite wavelength is supplied through
initial condition. Such a case is numerically tested and so
thing like a finite-amplitude analogue of the modulation
instability is observed, which accords with the presence o
inflection point in Ims in Eq. ~5.3!.

D. Implicit inclusion of higher-order terms by the expansion

By introducingL̂ we included an infinite number of linea
and nonlinear terms. The inclusion of linear terms is und
stood as a straightforward extension of the Pade´ approxima-
tion. The inclusion of nonlinearity must be checked by e
panding up to such a high order that overlooked nonlin
terms, if any, can be gleaned. We can either begin the
pansion off by the first order ofe and calculate up toe5, or
beginf by the second order and calculate up toe8. In this
paper we adopted the first strategy.

Formally we can operate an inverse ofL 8̂512g]X1]X
2

upon Eq.~1.1!, to rewrite it as

]TC1@11g]X1~g221!]X
21•••#@]XC1C]XC

2mC2]XC2g]X
2C#50. ~5.6!

Thus ~after an origin shift ofC) we return to the Benney
equation with many higher order terms. However, the c
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vergence of the expansion ofL 8̂21 is not guaranteed. It may
be conjectured that our method realizes a kind of noncon
gent summation, as a generalization of the Pade´ approxima-
tion.

VI. CONCLUSION

We have derived a weakly nonlinear model equation~1.1!
that describes generic behavior of the density waves sub
to the continuity equation~2.1! and the velocity-density con
juncting equation~2.3!. At first we found Eq.~1.1! by ex-
tending Whitham’s idea of ‘‘wave hierarchies’’ to includ
the dispersion and the nonlinearity. The nonlinearity was
corporated by means of the frozen coefficient method, wh
validity should be due to the slow variation of the variable
This idea could be formulated in terms of the multiple-sc
expansion, but in order to include sufficient degree of no
linearity, it was necessary to improve the expansion met
in a way analogous to the Pade´ approximation.

Numerical simulation of initial value problems, both fo
the fully nonlinear set of equations and for the weakly no
linear model equation, revealed that the model equation~1.1!
is capable of describing behaviors such as pulse format
baseline effect, growth saturation, and even something
the modulational instability.

The baseline effect is the outstanding feature of our mo
equation. It is, roughly speaking, a triangular interaction
(0,k,k) ~not necessarily conservative!, and is a property of
the original system from which our equation is derived.
should be noted that whether there are growing modes or
in Eq. ~1.1! depends on the initial condition, and is not d
termined solely by the equation itself. In this sense o
model equation unifies the KdV-Burgers equation and
Benney equation, as a model describing the same sys
with different initial conditions.
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