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Generic weakly nonlinear model equations for density waves in two-phase flows
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Whitham'’s linear theory of traffic flows is extended to include dispersion and nonlinearity so as to describe
the density waves in two-phase flows. An improved multiple-scale expansion incorporating the idea of the
Padeapproximation is introduced in order to include systematically the higher order dispersion and nonlinear-
ity into the approximate equations. As a result, generic nonlinear evolution equations with nonconservative
terms of a form such as;dxV are obtained. It is shown, numerically and analytically, that these terms
effectively incorporate not only linear dispersion relation but also some higher order nonlinearity, which we
call “baseline effect.” This effect is thought to be essential to the density waves in two-phase flows.
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[. INTRODUCTION unstable ultimately unless some damping mechanisms are
considered10-13. By means of the multiple scale pertur-
Much attention has been paid to a certain kind of wavebation, it is shown that the density waves may be described
phenomenon that is commonly observed in several norPy the Benney equatiofl4], which is the Korteweg—de
conservative systems. One such observation is known aéries (KdV) type equation including the negative diffusion
density (or voidage waves in two-phase flows. The density term and the higher order dissipation tef&15-17.
waves represent generic dynamical features of two-fluid sys- Although the Benney equation describes some asymptotic
tems such as gas_powder mixture ﬂOWS, bubb'y ||qu|d f|0WS,Stage of the unstable denSity waves, it is derived from the
and gas-droplet flow§1,2]. Since many kinds of flows of oOutset by means of the perturbation under the long wave
nearly uniform two-phase fluids are modeled by quite similar@PProximation and it cannot express well the dispersion in
sets of equations describing conservations of mass and m#2€ higher wave number range. In addition, endowed with a
mentum for individually incompressible phases, a universafinite intrinsic length defined by the coefficients of the sec-
discussion based on a generic model set of equatm ond and the fourth derivative terms, the Benney equation
phase continuum modelinghould be justified3]. seems to be incapable of describing the unlimited long wave
Recently notice has been taken of a phenomenologicdhodes that are relevant in real systems. o
resemblance between granular pipe flows and traffic flows In this paper, an improved multiple-scale expansion incor-
[4] In granu'ar p|pe ﬂOWS, the presence of ﬂLQEjr’ water, pOI’a'[ing the idea of the Padfpproximation is introduced to
etc) is believed to be essential, so that this case also bebnggstablish a procedure to deal with nonlinear, nonconservative
to the two-phase system. On the other hand, it was more thafaves subject to two-phase continuum modeling. As a result,
a decade ago that the behavior Of |inearized waves in twowe deriVe nonlinear eVOlUtion equations that are thought to
phase flows was explained in terms of Whitham’s “waveincorporate both linear dispersion relation and higher order
hierarchies,” which were originally proposed in the contextnonlinearity effectively by simple terms.
of traffic flows[5,6]. With these evidences we may identify N Sec. Il, we relate our problem to Whitham's idea of
the wave evo'utions in traffic ﬂOWS W|th those in Various wave hierarchiesThen we introduce nonlinearity to obtain a
systems of two-phase flows. KdV-like equation
The concept of “wave hierarchy” has been introduced in
association with the ill-posedness of the Cauchy initial value [ dr+ dy— dr03]W + W oy W — uW295 W — yay[ dr+ dx] W
problem. The characteristics of the wave equation become
imaginary and lead to the instability of the wave under con- =0, 1.7
sideration. Thus it is termed “the problem of complex char-
acteristics.” Corresponding instabilities in two-phase sys-with terms of nonconservative natutéhe terms withvy).
tems are discussed in terms of the wave-hierarchyrhis equation is rigorously derived in Sec. Ill by means of an
interpretation[6—9]. Inclusions of such instability mecha- improved multiple-scale expansion method. Results of nu-
nisms lead to negative diffusion, so that the wave becomemerical simulations are shown in Sec. IV, both for the KdV-
like evolution equation and for an original set of two-phase
model equations. The properties of Ef}.1) are discussed in
*Present address: Department of Applied Mathematics and Physsec. V.
ics, Faculty of Engineering, Tottori University, Koyama, Tottori ~ The authors believe that E@l.1) is ubiquitous, in the
680, Japan. sense that it is applicable commonly to density waves in
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two-phase systems, congestion waves in traffic systems, angherep= ¢+ 4,v = v +w, andA is a constant. Elimination

generally to waves in systems subject to the two-phase corsf w yields a first-order linear hyperbolic equation
tinuum modeling. Because the zero wave number mode

plays an important role in these waves, the Ginzburg-Landau [d,+ad]y=0, a=v+Ad. (2.6)
equation is not relevant. Our equation is rather related to the

Benney equatiofil4]. The main difference is that the Ben- Proceeding to the higher order of approximation in regard to
ney equation explicitly adopts the fourth derivative, while ¢, we obtain by a similar procedure

Eq. (1.2) avoids it and therefore is free from the artifacts

caused by it. [di+ady |+ 7] dy+bqdy][d;+ b0 Jp=0,  (2.7)

ized form of Eq.(2.3),
A. Wave hierarchies

To begin with, we review the idea of “wave hierarchies” TOW=—WHAY=Bog+ -, 28

of Whitham [5]. To do so, we take notice of the fact that
Whitham’s equations of traffic flow are quite similar to the
governing equations for nearly uniform two-phase flows. Amation to the second-order equati¢®.7) for time scales

description of such two-phase flows should postulate foufnuch longer tharr. Meanwhile under fhe second-order hy-

equations, namely., the continuity .equatlon and the mome nerbolic equation(2.7) signals propagate at finite speeds,
tum balance equation for the heavier phase, and those for t eamely ath, andb,. Therefore, in order that the two levels

lighter phase. The inertia of the lighter phase, however, i P :
often negligible, so that the lighter phase momentum equqsg{e?:rsccr:;pgggg(éf% and(2.7) shall be consistent, theave

tion is decoupled, and since the sum of the volume fractions
is unity, one of the continuity equations is also eliminated in b,<a<b, (2.9
one-dimensional cagg]. Thus we are left with two equa-

tions that generally goverr(nearly uniform two-phase must be satisfied; otherwise the initial value problem is ill

where  must be positive so that will be “slaved” to .
The first-order equatiofi2.6) should be a good approxi-

flows. They consist of the continuity equation posed. The termwvave hierarchyimplies that the characteris-
—0 21 tics of the lower-order waves should be between the charac-
drp+ox(pv)= (2D teristics of the higher-order waves.

and the momentum balance equation _The criterion of well pos_edne$§.9) is verified by substi-
tuting the elementary solution

a(pv)+ 3y, [momentum flux ternis = oexp ot +ikx) (2.10

into Eq. (2.7) and seeking the condition for the real part of
= 2 [body force term§ (2.2 o to be nonpositive for any real value kf A straightforward
calculation is possible, but it would be wiser to begin with
the neutrally stable case where= —iw is purely imaginary.
The quadratic equation fos is then decoupled into two
simple equations of real variables

in which (nonconservativebody force terms are dominant
and nearly balanced among themselves: ¢i stands for the
so-called voidage, or void volume fractipihe momentum
balance equation, together with some constitutive equations,

is rewritten in the form (@=b:k)(@=bak)=w—ak=0, (21D
E(h.v)+eF1(dyd v, - )+---=0, 23 which has a solution .o.nly vyhe@= b, or a=b,. Obviously

(¢.0)+ eF1(y, 0w ) @3 this leads to the stability criterion of the for(@.9).
which is reduced to a velocity-density relation Without loss of generality we can sb§=—b,=b and

rewrite Eq.(2.7) as
F(¢.0)=0 9 [0+ ady g+ 7 92— b232]h=0, (2.12
at the lowest order of approximation. For this reason Eq.
(2.3) may be called aelocity-density conjuncting equation wherga andb are positive constants with the dimension of
This type of equation is found also in the context of traffic velocity.
flows [4,5].

Let us consider a one-dimensional system governed by B. Extended idea of wave hierarchies
the continuity equatior(2.1) and the velocity-density con-
!unctlngdequatlor(zi?). At the Iowest"grdezr gf _apprgxmgtlon posed, and leads to instability in such a way that the growth
n regar. to a sma ngss parameée q.( Jisre uced to is faster for shorter wavelength. This behavior does not re-
the relation(2.4). ProvidedrF(¢,v)=0 with constaniy and  fiect the real behavior of the physical system described by
v, these equations are linearized as the original set of Eqs(2.1) and(2.3). Evidently higher de-
L L rivative terms in Eq(2.3) prevent the short wave modes to
[dit v+ dpdw=0, Ay—w=0, (2.5  grow.

If a>b in Eq. (2.12, the initial value problem is ill
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Typically we think of the “momentum diffusion term” the expansion2.17 of a and substitute it into Eq(2.13
(usually calledviscosity termy which takes the formp2w  with b= const=a, (by definition of ¢*). The unidirection-
appearing in the right-hand side of Eg.8). Inclusion of this  ality leads to
term modifies Eq(2.12 so that we may have , 5
e L3 = b3, ]4r= (0= 0d,) 3+ box) ¥

oyt ady ]+ 70— b7 J—N9;95¢4=0. (2.1
Lo W+ d; i i (213 ~ 2 ragdy( 9+ agdy) (2.19
Equation (2.13 is divided into two parts as

" ~ because for long wav = —ayd, ¢ at the lowest approxi-
L.+ L,yp=0, so that both of the equations g waveky o) il

mation. By suitable rescaling we obtain a weakly nonlinear
N equation
Li=[0y+ady—N20,02]¢=0, (2.143
[+ dx— 102 )W + W oy W — yay[ d1+ dx ¥ =0,
Lop=[02—b%32]y=0 (2.14b (2.19

admit only neutrally stable waves, i.e., only purely imaginaryWith ¥ ¢—¢*, whena is expanded ta,. Later we will

o=—iw. Their velocities area/(1+\2k?), +b. The first show that inclusion ofa, is indispensable. This inclusion

order wave is now dispersive. The neutrally stable modes ofi€/dS @ modified ~Korteweg—deVries(MKdV) term

5 :
Eq. (2.13 are then easily obtained. The criterion for the ~ 4V “9x¥ so that we arrive at Eq1.D).
modek not to grow is written in the form In analogy to Eqs(2.14), Eq. (2.19 is divided into two

parts asM ¥ +N¥ =0 where
a

b1 72=*h (2.19 MW =[dr+dx— 103V +Wax¥,  (2.208
which is an extension of the conditid®.9) for the dispersive NW = — yay[ 7+ dx]P. (2.20n

case.
The left inequality of the conditioi2.15 always holds. Each operator corresponds to a wave equation whose solu-
The right inequality becomes invalid for small wave numbertion can travel with a constant shape, not growing or damp-
modes whena>b. Even in that case the range &ffor ing. If these two equations have a common solution traveling
growing modes is finite. The short waves always damp, s&vith @ common velocityc, Eq. (2.19 also admits the steady
that the initial value problem is well posed in the sense thatraveling solution. A family of cnoidal wave solutions
Reo is bounded ag&— [18,19.
X—ct
|

1
(2.2)
Whena>b and therefore the small wave number modes
have positive growth rate, nonlinearity must be included tas found to meet this demand. Later we will show that the
limit the wave growth. We apply the method of frozen coef-conditionc=1 is not only sufficient but also necessary for

ficients, which readily gives deep results for nonlinear prob-admitting steady traveling solutions to equations such as Eq.

1
\Ifz—zz[mz cré

C. Extension to nonlinear cases |

lems[18]. (1.1 or Eq.(2.19.
We recall thata,b,\, @df in Eg. (2.13 may all depend
on ¢. This is true wheng is constant. We assume that Eq. 1. RIGOROUS DERIVATION OF MODEL EQUATIONS

(2.13 still holds locally wheng?varies slowly in space and

: A. Improved multiple-scale expansion method
time. Then we have

Equation(1.1) derived here has terms of peculiar form,
[0+ a(B)d] -+ () 32— b(h)221p—N()2d,0°p=0,  such asirax¥ anddro5¥. The latter has been known in the
(2.16  regularized long wave equatidi20,21. The merit of such
o o terms has been thought to be an improved expression of the
with ¢= ¢+ . As ¢ is small, ¢ in Eq. (2.16 may be re- linear dispersion relation. In Sec. V, we will show, however,

placed byd. that also some part of the higher-order nonlinear effect is
Paying attention to the appearance of the growing modeslescribed by these terms.
we define ¢* by the critical conditiona(¢*)="Db(¢*), However, it may be questionable whether the nonlinearity
around which we perform an expansion to the degree of being both sufficient and necessary has been
included or not. The heuristic derivation given in Sec. Il is
a=a(%=ao+ 31(97— é*) +a2(¢7— ¢*)2+ - -, not free from the suspicion that approximations are arbitrary

(2.1 and may be inconsistent with each other. Evidently we must
resort to a systematic and justifiable analysis. We propose an
and similarly forb, N\, and 7. The dominance of long wave improved method of multiple-scale expansion, which, fortu-
modes suggests, however, that the coefficients of the higherately, can legitimize Eq1.1).
derivative terms are less influential to the behavior of Eq. Before describing our expansion method, we would like
(2.16. Therefore it may be allowed, at least in a heuristicto clarify why the usual reductive perturbation expansion is
discussion, to regard, \, and7 as constants. We adopt only not good enough. Let us follow the usual method in multiple-
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scale notation. The Gardner-Morikawa transformtive Rer, , we setdy= ¢* so thata=b. At this point(2,2)-
Oy =€y + e3at3, dx= €dy,, Gy = —Cdy, and scaling of the Padeapproximan{22]to o is calculated as
far-field variablesyiae~Wwave~ € Yield the KdV equation

i _ 2 2
at the fifth order ofe. In the next ordere®, the Benney Oslacp= |a-k 2a7RVok -
equation with an additional nonconservative te#fy?) is 1-2iaRVok+Vok

tained[17]. Th itional term is n ry in order t . .
obtained[17] e additio erm is necessary in order to Let us formulate the long wave expansion by expanding

describe the influence of the “baseline” mode upon theth differential ¢ d th bl tollows:
emergence of positive growth. This nonlinear destabilizing € difierential operators and the variables as lollows:

term, however, cannot be balanced until we proceesf tim
pick up ai_(z/_/?’) and d2(4?). Such a high-order expansion dy= €0, + €20, + 9+ -+, 37
would be ridiculous, because there would be too many terms 1 2 s
and no guarantee of convergence for finite values.of

It is possible, however, to obtain a less intractable equa-
tion. In principle we can perform the expansion procedure up B _ 2 3
to the eighth order of, and then put some higher terms d=doty=doteprt e ot pst -, (3.9
together into the fornd,d, ¢, ata§¢, etc., reducing the num-
ber of terms. Practically, this tedious expansion procedure
can be skipped by the following technique. We define a lin-yq e b1
ear differential operator

(3.6

Iy=€dy, + €2dy,+ €2y + -+, (3.9

v=€v1+ €%Vt gt - -, (3.10

and v, are assumed to be independent of
$1,S2,X1,X2. This assumption means thap+ e, varies so
slowly thatd,(¢g+ edq) ~ e4ax3¢1 is negligible in compari-
son with 9, ¢~ 63(9X1¢)2. Thesee!-order variables are intro-

with adjustable constants(). Then a “distorted” time de- duced so that higher order nonlinear terms, such as
rivative $17% 2 and ¢id, ¢, will appear at the same order as

ailgbz and ¢,y ¢ Due to Eqs(3.3), (3.4), and(3.10), the
ds=Ldy (32 control parameteW,, should be in proximity toV,, so we
write Vg, =Vo+ €V;.

'(Sa m;n))dil;lé?gagngf tgeae;(pi?zog dl'isit)aet;flgrmee\;jarlr?etrsgsafreto The adjustable constants inshould be determined after
S1x o7 ) P all the calculations, but provisionally we set

defined so that higher-order terms may vanish. This proce-
dure is an operator analogue of the Pageroximation.

£:1+A(1)aX+A(2)§§+..., (31)

[=1-2RVads,—Va?, (3.11

B. Calculation procedure of expansion method in accordance with the denominator in the Pagproximant

Suppose that an explicit form of the velocity-density con-(3'6)' The governing equations are now rewritten as

juncting equatior(2.3) is given. For concreteness we assume

the following form: dsp+La(pv)=0, (3.12
R[ 3+ v3yJv=(Vex— )l () — 1—RM 20,P()+ d2v, R =L{—R(v%2)+ (Vey— )l (¢p)— 1
33 —RM 20,P(¢)+ v}, (3.13

which is just a rewriting of the generic model equation pro-. . .
posed by Kawaharg3]. We express(¢) and P(¢) as ex- 'm%’\f[u'cr;. wte su db;t:tute Eq$§.7)a(3.1% btai
pansions around somg,= const for later convenience: € first and he second order elwe obtain

1(b)=Vg [ Vo+a(yl do) + (il o) vi=Vitag,/ o, (3.14

+a® (Yl po)3+ -1, (3.4) vo=ady/pot+a?(d1/¢o)?, (3.1

wherea®=a—a?/V,. The next order® yields

M 25,P(p)=[0%+ (sl o)+ - - - 1o “oxtp, (3.5

[asl+a‘9xl]¢2:oa (3.16
where = ¢— ¢o. Note that the expansion coefficients de-
pend ond,. vs=acs/po+2a' p1dhs/ P+ a®(1/0)°,
If we linearize the governing set of EgR.1) and (3.3 (3.17

around the uniform stated(v)=(¢q,0) with Vg,=V,, we

obtain Eq.(2.13 together with the coefficients=RV,,  With a®=a®—2aa/Vy+a% V§. Hereafterss +ad, is al-
\2=V,, finding a andb to be given by the expansiori3.4  ways equated to zero, which is just the Gardner-Morikawa
and (3.5. By assuming an elementary solutidi2.10), transform.

o=o. is given in an explicit form. The real part @f_ is At the fourth order we use a secular condition b,
always negative, while that of, becomes positive when noting that¢; is independent ok, , x5, S;, ands,. Then we
a>b. Paying attention to the case of the emergence of posiebtain
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[0s,+ 0y, +V1dy 162+ 2(a+a?) (1] bo) dx, b2~ 28" RV ¢,=0, (3.18
[, +ady ]¢p1=0, (3.19

vi=adsl pota?(2¢1hat B3) p5+3a i/ p5+a Y (1l ho)* + RVo[4aa? +a>— Bldg “hrdy, b2, (3.20

The constana® is composed o0&, ¥, «, a, andV,,.
We then proceed to the fifth order to collect all that is needed. The result is

[ds,+@dx, + V1dy 1 bat[ds,+adx, +V1dy 1ot [ds,+ a0y, +V1dy Jd1+2(at+a?) ¢ *h1dx 3+ 2(at+a?) ¢ b1y, b2
+2(a+a?) do B1iyx,h1+3(a%+a) g 2hid,, o~ RVo(38°+B) b ' 10y b2

—2aRvo[aa§1¢3+ 2aaxlaxz¢2+vla§1¢2]=o. (3.20)

Equation(3.21), combined with Eqs(3.16 and(3.18, can  and unfortunately leads to a true ill posedness for some val-
be rewritten as ues ofW,,. This difficulty is due to the termi[‘PZ/Z], but
it can be “regularized” by noting that
[ds+(a+AV)a ]yt (a+a®) ¢g to[ 4]
— [ W2I2]= — o[V ixP]
+(a?@+a®) ¢y 20,  4°]— 2aRVo(a+AV) i
= dx[(91+ dx— 35071)¥ +O(€%)]
—(3a%+ B)RVo by Lo ¢4?12]=0(€%),  (3.22

=dy[ 91+ Ix]¥ +O(€). (3.29
where . . . )
Setting y=y' — 4, finally we obtain Eq.1.1). This “regu-
(932[1—273Voa(7x—Vo<9>2<](9t, (3.23 larization” is equivalent to setting the linear differential op-
erator as
AV:VEX_ VO: GV]_, (324) R a2 )
L=1- Za—m RV{?X—V(?X. (330)

=~ po=€p1+ P+ 3pat ety +O(€).
(3.25

By adding terms of different order efin Eq. (3.25), actually
we want toextrapolatethis result to finite values of. Since
the Padeapproximation is known to be effective in extrapo-  Initial value problems are numerically solved under the
lation, we may expect that also our extrapolation does workperiodic boundary condition, both for the reduced equation
When the boundary condition allows the Galilei trans-(1.1) and for the original set of model equatiof®1) and
form, AV can be set equal to zero without loss of generality.(3-3. For both cases, the pseudospectral method by Fourier
OtherwiseAV can be approximately eliminated by an origin €xpansion is adopted. Time integration is performed by the
shift of . By suitable rescaling of variables, we obtain ~ fourth order Runge-Kutta method. The adequacy of the nu-
merical scheme, time step, and mode number was checked
[ 07+ Iy — 102 ]W +W oy ¥ — p U203 — ' dy[ d7+ dy | ¥ by running solutions expected to travel in constant shapes.
Such solutiongsteady traveling solutionscan be obtained
— 895 W?/2]=0, (3.26  as eigensolutions, numerically or maybe analytically.

IV. NUMERICAL SIMULATIONS

A. Description of numerical simulations

wherey’ and u are positive constants. B. Dynamics of reduced equation

However, we have not yet reached the goal. Substitution Equation(1.1) involves Eq.(2.19 as a special case where

of pn=0. Let us begin with this case.
n ] In Fig. 1, three runsa), (b), and(c) are compared to show
V=w,+WexdoT+ikX] (82D the effect of “base line.” The parameters are common;

) v=0.1,.=0. Also the initial datgof white-noise spectrujm

with V<1 into Eq.(3.26) yields are the same except for the zeroth Fourier m@tmse-
line”). The baseline levels fdia), (b), and(c) are set at 0.3,

—i(1+¥,— uPDk—(y' + 6V,)k? 0.1, and— 0.2, respectively.
o= 1-iy'k+K In every case the highest modes rapidly damp away. The

lower modes survive to form a rather irregular wave train. In
——(y"+6¥p)(k— +x) (3.28  the case@ each peak in this irregular wave train tends to
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v @ v () v ©  tme (a) s O time
05 M“MWW 0.5 05
0.2 0.2 0.2 0 0.428 0.428
0 OMMW 0 0.20 0.20 0
0.5 05 0.5 0.00 0.00
ngvf'\/‘\l\f\l\w\'\/\/\/\' 0.% o,g 100
AN 428NN T 4o AAA
oz MM/M\/\ W\A/ 02 o 0; 20~W\A Y 00420 ’ VA\/U 400
02} AV S L 1000 0.00 0.00
]
0.5 0.5 0.5 Anm in
0.2| (nofinite solution) | 0.2 /\J\/\/\/\/\/‘ 0.2 0.428 0.428
0 0 0 2500 0.20 020] U v UU k_ 1600
0 x 2000  x 2000  x 200 0'000 = 0-000 =
X X

FIG. 1. Time evolutions under Eq2.19 for white noise initial
data with different baseline levelga) 0.3, (b) 0.1, and(c) —0.2
(y=0.1). In the caséa) the solution diverges at some finite time,
after which no finite solution can exist.

FIG. 3. Fully nonlinear dynamics under Eg®.1) and (3.3
with baseline levels(a) 0.5 (>¢*) and (b) 0.4 (<¢*)(R
=1.0,M=0).

“slaved” to ¢. For this reason we do not depictin Fig. 3.
grow higher under the constraint of mass conservation. Fi- At the first stage of time evolution, both ruks and (b)
nally the highest peaks are found to “blow up” due to self- show formation of pulses, seemingly due to the dispersion.
focusing. This divergence seems to occur at some finite timen the casda) the pulses damp out, while in the cabgthey
On the contrary, the peaks in the ca@® are subject to grow as long as the numerical scheme endures the amplitude
diminution; all the structures seem to fade away until reachof ¢. The result of(b) is regarded as a separation into two
ing a uniform state. Something like a dispersive shock withphases of different density.e., of different void fraction
small amplitude is observed at the final stage. The dajsis Following the expansion recipe given in Sec. lll, we cal-
intermediate. As far as<3000, several peaks endure to the culate the numerical setting for the reduced equating).

end, not blowing up or damping away. We conclude that theyhenR =1.0, M=5.0, the following values are obtained:
zero wave number mode is influential to the overall wave

evolution. In this paper we call it “baseline effect.” V=-2325<(¢p—¢*), ¢*=0.428,
The presence of positive suppresses the explosion of
peaks, as is seen in Fig. 2. The long time limiting state is dX/dx=4.05, dT/dt=0.93,

considered to be a separation into two levels.
y=v'—6=0.113-(—-0.511)=0.624,

C. Comparison with original dynamics 114
u=1.14,
Some initial value problems for the set of E¢8.1) and

(3.3 are solved numerically. Explicit forms dfandP are ~ We then perform numerical simulations of Ed..1) under

assumed ad(¢)=(1—¢) 1™ P(4)=(1—¢) ", with this setting, with initial conditions corresponding to those in

m=4,n=1. Thena andb are calculated explicitly, yielding Fig. 3. As is seen in Fig. 4, behavior of the solutions to the

¢* =0.428. original equations is qualitatively reproduced, at least in re-
Figure 3 shows typical results of two runs for the samegard to the pulse amplitude.

parameter value® =1.0, M=5.0. For both runs the initial

condition for ¢ is given by a sinusoidal wave that is of the V. DISCUSSION
lowest mode and of the same amplitude 0.1. Only the base- A The sianif ¢
line mode is different: 0.5% ¢*) in (a) and 0.4 K ¢*) in - The significance of terms

(b). The initial condition forv (here given by a sinusoidal The outstanding feature of E€{L.1), or (2.19 in a special
wave is not important, because soon becomes almost case, is that it includes the terérdx¥. This term seems to

time =0 100 200 500

5.0 5.0 5.0 5.0
NinE LNl

¥ ¥ v b 4

0 O\A/\/\‘Av/'\/\vf\/\/\/ 0 0

1.0 -1.0 .0

1.0 - 1
0 yx 20000 y 20000 y 20000 x 200

FIG. 2. Peak growth saturation due #o>0 in Eq.(1.2) (y=2.0,u=0.3).
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(a) (b) time Certainly the effect of the baseline mode is present also in
bd k4 the original, fully nonlinear system, as is clear from the nu-
0 0 0 merical simulationgsee Fig. 3. By linearizing Eqs.(2.1)
0.5 0.5 and (3.3) around the uniform stated(v)=(¢gq,0), we ob-
1.0 1.0 tain Eqg. (2.13, wherea and b depend ong,. Instability
depends on whethea>b and therefore ony,, i.e., the
0 —— 0 ‘V\/\/“\/’ 400 “pbaseline mode.” This mechanism is passed on to Eq.
0.5 0 5\/ (2.19. To see this, we split the equation into two parts as in
1.0 1 Eqg. (2.20 and substitute the trial solutia®.2) into each of
— o\ —] them. For both cases is found to be purely imaginary, and
0 0 1600 . ~ -
05 05 U U the phase velocities forM and N are calculated as
1.0 1.0 cy=1+V, andcy=1, respectively. The sign and the mag-
0 X 200 O X 200 nitude ofcy —cy, timesy, defines the growth rate of long

waves in Eq(2.19, which is just the wave hierarchy condi-
tion. The physical meaning of is the inertia. The existence
of the inertia(of the heavier phagdimits the signal propa-
gation speed, and the velocity of the kinetic wavees;annot

h b idered bef t least in th i teﬁceed it without causing instability. Endowed with this
ave been never considered betore, at ieast in the contex B ysical interpretation, the terd.dyxW is quite meaningful.

long wave model e_quatlons. As well as the te?mf(\lf, th|s_ A similar discussion is possible for the case with the
term ha; two merits. On one hand it reproduces the I'neal(/leV term (1>0). It is found that positive growth is con-
o-k relation for shorter waves more precisely. On the othegjnaq \ithin a finite range of baseline level, defined by the
har_ld it introduces a kind of hlgher_order nonlinear effect, .| ion W, — uW¥2>0, which lies between two distinct
which we call .basellne.effect in Fh's Paper. . stable ranges. Some numerical solutions of Eqgl) show
Lgt us_ 90n3|der the I|[1ear relat!on f|rst, by sgtt|n§0 “separation” into these two stable states, while the solution
for simplicity. When¥ =Wexgot+ikx] is small, lineariza-  of Eq. (2.19 for the same initial condition explodes within
tion of Eq.(2.19 yields a(complex dispersion relation finite time due to self-focusing. This is the reason why the
k= k2 MthV terg1 Sshoul?‘ be ingiudedd Y?}/e iﬂh}gg\l;j notet_that Kot—h
= matsu and Sasa have obtained the equation as the
7T 1k K 63 lowest order model for traffic flowp4].

FIG. 4. Time evolutions under Ed1.1). The graphs are de-
picted upside-down for comparison with Fig. 3y=£0.62,
u=1.1).

This is nothing other than a Padgproximant22] to the B. Steady traveling solutions

original dispersion relation under E€8.3). It reproduces the In many nonlinear systems steady traveling solutions play
behavior ofa not only for small values but also for large an important role. The triumph of the soliton is too famous to
values ofk. This is meaningful in the present case for two mention here. Pulse dynamics achieved remarkable success
reasons. First, growth and damping lead to interaction bem several nonconservative, nonintegrable systems, described
tween different scales, so we cannot limit ourselves to thgyy the Kuramoto-Sivashinsky equation, the Benney equa-
long wave modes. Second, if a description by pulse dynamtion, etc.[23,24).

ics is possible, the tail structure of the pulse is important we can obtain steady traveling pulse solutions to Eq.
[23]; therefore the linear evanescent modes should be cogq.1). By assuming tha?’ =¥ (Z) with Z=X—cT, we ob-

rectly expressed. . tain an ordinary differential equation
What seems more important is that the termay¥V and
dr0%¥ can incorporate nonlinearity. Suppose that (1—¢)d,V +casV +Wa, ¥ — u¥29,¥ —(1—c)ys5¥ =0,
(5.9
V=¥, +WexgoT+ikX] (5.2

which poses a nonlinear eigenvalue problem under the
boundary conditiom¥(zin) =V (Znay =V . The “eigen-

—i(1+ Wy )k— yk? value” c is easily determined as follows. Let us multiply Eq.
= (5.4 by ¥ and integrate with respect #. This leads to

with constant¥,. As ¥ <1 we obtain

T T IS kK2
—i(1+ ¥ )k+ y¥ k?>+ ... (for long wave$
=) —y+0(k™1) (for short waves (1_0)7’f dZ(a,%)?=0 (5.9

5.3
®3 by partial integration. Obviouslg=1 if ¥ is not trivial.

to find that the sign of’,, defines the sign of Refor long  Then the terms withy completely cancel out each other, so
waves. The zero wave number mode or “baseline mode’that we obtain a family of exact solutions that travel in con-
W, is influential through the implicit nonlinearity introduced stant shape witlt=1. Especially, when.=0, a family of

by these terms. This is explained intuitively by recognizingcnoidal wave solution$2.21) is obtained. Note thakt can
that 9r=—(1+W¥,)dx in Eq. (2.19 for long waves. take any positive value i, is given in accord.
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C. Comparison with other models of nonconservative waves vergence of the expansion bof ~Lis not guaranteed. It may

According to the linearized expressi@f.3), the sign of  be conjectured that our method realizes a kind of nonconver-

¥, determines the sign of Refor long waves. This is the gent summation, as a generalization of the Papjaroxima-

“baseline effect.” When¥,<0, the dynamics is similar to tion.

that of the KdV-Burgers equation. On the other hand, the

dynamics for¥,>0 resembles that of the Benney equation

in the existence of positive growth in long wave region. VI. CONCLUSION

Weakly nonlinear analysis of waves in two-phase flows has ) i )

yielded either the KdV-Burgers equation or the Benney W€ have derived a weakly nonlinear model equatibd)

equation, depending on the setting. We may say that ouhat descnpe; generic behavior of the den.sny waves subject

equation unifies these two cases. fto th<_a contmwty equatlo(Q._l) and the velocity-density con-
The Benney equation and the Kuramoto-Sivashinskyuncting equation(2.3). At first we found Eq.(1.1) by ex-

equation involve an intrinsic length, determined by the coef{€nding Whitham's idea of “wave hierarchies” to include

ficients of #2W and #%W. This length, defining the width of the dispersion and the nonlinearity. The nonlinearity was in-

the steady pulse solution, seems to be influential to the timgor.pqrated by means of the frozen cogff!ment method_, whose
evolution, though it is a little modified due to nonlinearity. validity should be due to the slow variation of the variables.

On the contrary Eq(1.1) does not involve such a finite in- This idea could be formulated in terms of the multiple-scale

trinsic length, as is clear from Eq2.21) or Eq. (5.3). The expansion, but in order to include sufficient degree of non-
presence of i’ntrinsic length, independentiof is thought to linearity, it was necessary to improve the expansion method

be an artifact as far as waves in two-phase flows or traffid? @ Way analogous to the Padpproximation.

flows are concerned, because under the set of gb.and th Nfurlrenca:.&mulatltonfof |n|tt|al valued ?rokilhems, bl?lth for
(3.3) wavelength appears to have no such limit. € Tully noniinear set of equations and for the weakly non-

Due to the lack of intrinsic wavelength at criticality, we linear model equation, revealed that the model equafiah

cannot apply thetime-dependentGinzburg-Landau equa- is capable of describing behaviors such as pulse formation,

tion, except when a finite wavelength is supplied through thé)asellne eff_ect, g_rovvth_s_aturanon, and even something like
the modulational instability.

initial condition. Such a case is numerically tested and some- The baseli Hect is th tstanding feat ¢ del
thing like a finite-amplitude analogue of the modulational € baseline efliectis the outstanding feature ot our mode
quation. It is, roughly speaking, a triangular interaction of

) ity i hich ith th ¢
instability is observed, which accords with the presence of al 0K.K) (not necessarily conservativeand is a property of

inflection point in Im in Eq. (5.3). the original system from which our equation is derived. It

should be noted that whether there are growing modes or not

in Eq. (1.1) depends on the initial condition, and is not de-
By introducingl we included an infinite number of linear termined solely by the equation itself. In this sense our

and nonlinear terms. The inclusion of linear terms is undermodel equation unifies the KdV-Burgers equation and the

stood as a straightforward extension of the Pageroxima- Benney equation, as a model describing the same system

tion. The inclusion of nonlinearity must be checked by ex-With different initial conditions.

panding up to such a high order that overlooked nonlinear

terms, if any, can be gleaned. We can either begin the ex-

pansion of¢ by the first order of and calculate up te®, or ACKNOWLEDGMENTS

begin ¢ by the second order and calculate upefo In this

paper we adopted the first strategy.

Formally we can operate an inverse lof=1— ydy+ ai
upon Eq.(1.1), to rewrite it as

D. Implicit inclusion of higher-order terms by the expansion

Some part of the algebraic calculations were performed
with REDUCE at the Kyoto University Data Processing
Center. The authors would like to thank Professor K.
Sekimoto at Yukawa Institute and K. Ichiki at Tohoku Uni-
versity for some fruitful discussions and a wonderful dem-
onstration of granular pipe flow. It was during discussion

—uW20, ¥ — y92¥]=0. (5.6)  With Bandoet al. [25] on traffic flows that the idea of the
MKdV term came to one of the authors. We thank also Pro-
Thus (after an origin shift of¥") we return to the Benney fessor S. Toh, E. Suzuki, M. lima, and S. Goto for valuable
equation with many higher order terms. However, the condiscussions and suggestions.
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